Chapter1. 并发编程的挑战

1.1 上下文切换

单核处理器也支持多线程执行代码,CPU通过给每个线程分配CPU时间片来实现这个机制。CPU通过时间片分配算法来循环执行任务,当前任务执行一个时间片后会切换到下一个任务。但是,在切换前会保存上一个任务的状态,以便下次切换回这个任务时,可以再加载这个任务的状态。
所以任务从保存到再加载的过程就是一次上下文切换。上下文切换是有时间和空间的开销的。线程有创建和上下文切换的开销。

1.1.3 如何减少上下文切换

减少上下文切换的方法有无锁并发编程、CAS算法、使用最少线程和使用协程。

  1. 无锁并发编程:如将数据的ID按照Hash算法取模分段,不同的线程处理不同段的数据。
  2. CAS算法:Java的Atomic包使用CAS算法来更新数据,而不需要加锁。
  3. 使用最少线程:避免创建不需要的线程,比如任务很少,但是创建了很多线程来处理,这样会造成大量线程都处于等待状态。
  4. 协程:在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换

1.2 死锁

产生死锁的例子:查看Demo
避免死锁的方法:

  1. 避免一个线程同时获取多个锁。
  2. 避免一个线程在锁内同时占用多个资源,尽量保证每个锁只占用一个资源。
  3. 尝试使用定时锁,使用lock.tryLock(timeout)来替代使用内部锁机制。
  4. 对于数据库锁,加锁和解锁必须在一个数据库连接里,否则会出现解锁失败的情况。

1.3 资源限制

1.3.1 什么是资源限制

资源限制是指在进行并发编程时,程序的执行速度受限于计算机硬件资源或软件资源。
例如,服务器的带宽只有2Mb/s,某个资源的下载速度是1Mb/s每秒,系统启动10个线程下载资源,下载速度不会变成10Mb/s,所以在进行并发编程时,要考虑这些资源的限制。
硬件资源限制有带宽的上传/下载速度、硬盘读写速度和CPU的处理速度。软件资源限制有数据库的连接数和socket连接数等。

1.3.2 资源限制引发的问题

在并发编程中,将代码执行速度加快的原则是将代码中串行执行的部分变成并发执行,但是如果将某段串行的代码并发执行,因为受限于资源,仍然在串行执行,这时候程序不仅不会加快执行,反而会更慢,因为增加了上下文切换和资源调度的时间。
例如,之前看到一段程序使用多线程在办公网并发地下载和处理数据时,导致CPU利用率达到100%,几个小时都不能运行完成任务,后来修改成单线程,一个小时就执行完成了。

1.3.3 如何解决资源限制的问题

  1. 对于硬件资源限制,可以考虑使用集群并行执行程序。既然单机的资源有限制,那么就让程序在多机上运行。比如使用ODPS、Hadoop或者自己搭建服务器集群,不同的机器处理不同的数据。可以通过“数据ID%机器数”,计算得到一个机器编号,然后由对应编号的机器处理这
    笔数据。
  2. 对于软件资源限制,可以考虑使用资源池将资源复用。比如使用连接池将数据库和Socket连接复用,或者在调用对方webservice接口获取数据时,只建立一个连接。

1.3.4 在资源限制情况下进行并发编程

根据不同的资源限制调整程序的并发度,比如下载文件程序依赖于两个资源——带宽和硬盘读写速度。有数据库操作时,涉及数据库连接数,如果SQL语句执行非常快,而线程的数量比数据库连接数大很多,则某些线程会被阻塞,等待数据库连接。

Chapter2 Java并发机制的底层实现原理

Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行,Java中所使用的并发机制依赖于JVM的实现和CPU的指令。

2.1 Volatile的应用

综述:在多线程并发编程中synchronized和volatile都扮演着重要的角色,volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。如果volatile变量修饰符使用恰当的话,它比synchronized的使用和执行成本更低,因为它不会引起线程上下文的切换和调度。