单例模式

单例模式是Java中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

定义:保证一个类仅有一个实例,并提供一个访问它的全局访问点。

在应用这个模式时,单例对象的类必须保证只有一个实例存在。许多时候整个系统只需要拥有一个的全局对象,这样有利于我们协调系统整体的行为。

单例模式的特点

  • 单例类只能有一个实例。
  • 单例类必须自己创建自己的唯一实例。
  • 单例类必须给所有其他对象提供这一实例。

单例模式的优点

  • 单例类只有一个实例
  • 共享资源,全局使用
  • 节省创建时间,提高性能

单例模式的Java实现

饿汉法 static final field

这种方法非常简单,因为单例的实例被声明成static和final变量了,在第一次引用该类的时候就会初始化创建对象实例,而不管实际是否需要创建。

1
2
3
4
5
6
7
public class Singleton {   
private static final Singleton instance = new Singleton(); //使用static和final关键词
private Singleton() {} //提供一个私有的构造函数
public static getInstance(){
return instance;
}
}

JDK中java.lang.Runtime就是采用了这种写法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Runtime {
private static Runtime currentRuntime = new Runtime();

/**
* Returns the runtime object associated with the current Java application.
* Most of the methods of class <code>Runtime</code> are instance
* methods and must be invoked with respect to the current runtime object.
*
* @return the <code>Runtime</code> object associated with the current
* Java application.
*/
public static Runtime getRuntime() {
return currentRuntime;
}

/** Don't let anyone else instantiate this class */
private Runtime() {}

//省略其他代码
}

总结:

  • 优点:编写简单,这种实现方式适合那些在初始化时就要用到单例的情况,这种方式简单粗暴,如果单例对象初始化非常快,而且占用内存非常小的时候这种方式是比较合适的,可以直接在应用启动时加载并初始化。

  • 缺点: 如果单例初始化的操作耗时比较长而应用对于启动速度又有要求,或者单例的占用内存比较大,再或者单例只是在某个特定场景的情况下才会被使用,而一般情况下是不会使用时,使用「饿汉式」的单例模式就是不合适的。饿汉法无法做到延迟创建对象。但是我们很多时候都希望对象可以尽可能地延迟加载,从而减小负载,所以就需要下面的懒汉法。

懒汉法(非线程安全)

这种写法是最简单的,由私有构造器和一个公有静态工厂方法构成,在工厂方法中对singleton进行null判断,如果是null就new一个出来,最后返回singleton对象。这种方法可以实现延时加载,但是有一个致命弱点:线程不安全。如果有两条线程同时调用getSingleton()方法,就有很大可能导致重复创建对象。

1
2
3
4
5
6
7
8
9
10
public class Singleton {  
private static Singleton instance = null;
private Singleton (){}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}

懒汉式(线程安全)

这种写法考虑了线程安全,将对singleton的null判断以及new的部分使用synchronized进行加锁。同时,对singleton对象使用volatile关键字进行限制,保证其对所有线程的可见性,并且禁止对其进行指令重排序优化。如此即可从语义上保证这种单例模式写法是线程安全的。注意,这里说的是语义上,实际使用中还是存在小坑的,会在后文写到。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Singleton {
private static volatile Singleton singleton = null; //使用volatile关键字
private Singleton(){}

public static Singleton getSingleton(){
synchronized (Singleton.class){
if(singleton == null){
singleton = new Singleton();
}
}
return singleton;
}

}

也可以写成

1
2
3
4
5
6
7
8
9
10
public class Singleton {  
private static Singleton instance = null;
private Singleton (){}
public static synchronized Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}

虽然上面这种写法是可以正确运行的,但是其效率低下,还是无法实际应用。因为每次调用getSingleton()方法,都必须在synchronized这里进行排队,而真正遇到需要new的情况是非常少的。所以,就诞生了第三种写法:

双重检查锁

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Singleton {
private static volatile Singleton singleton = null;
private Singleton(){}
public static Singleton getSingleton(){
if(singleton == null){ // single check
synchronized (Singleton.class){
if(singleton == null){ // double check
singleton = new Singleton();
}
}
}
return singleton;
}
}

这种写法被称为“双重检查锁”,双重检验锁模式,是一种使用同步块加锁的方法。程序员称其为双重检查锁,因为会有两次检查 instance == null,一次是在同步块外,一次是在同步块内。为什么在同步块内还要再检验一次?因为可能会有多个线程一起进入同步块外的 if,如果在同步块内不进行二次检验的话就会生成多个实例了。
两次null检查看似多此一举,但实际上却极大提升了并发度,进而提升了性能。为什么可以提高并发度呢?就像上文说的,在单例中new的情况非常少,绝大多数都是可以并行的读操作。因此在加锁前多进行一次null检查就可以减少绝大多数的加锁操作,执行效率提高的目的也就达到了。

我们来看 instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情。

  • 给 instance 分配内存
  • 调用 Singleton 的构造函数来初始化成员变量
  • 将instance对象指向分配的内存空间(执行完这步 instance 就为非 null 了)

但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。

为了解决这个问题,我们只需要将 instance 变量声明成 volatile 就可以了。
这里要注意,有的人认为使用 volatile 的原因是可见性,也就是可以保证线程在本地不会存有 instance 的副本,每次都是去主内存中读取。但其实是不对的。使用 volatile 的主要原因是其另一个特性:禁止指令重排序优化。也就是说,在 volatile 变量的赋值操作后面会有一个内存屏障(生成的汇编代码上),读操作不会被重排序到内存屏障之前。比如上面的例子,取操作必须在执行完 1-2-3 之后或者 1-3-2 之后,不存在执行到 1-3 然后取到值的情况。从「先行发生原则」的角度理解的话,就是对于一个 volatile 变量的写操作都先行发生于后面对这个变量的读操作(这里的“后面”是时间上的先后顺序)。

那么,加上volatile之后的这种写法是不是绝对安全呢?前面说了,从语义角度来看,并没有什么问题。但是其实还是有坑。说这个坑之前我们要先来看看volatile这个关键字。其实这个关键字有两层语义。第一层语义相信大家都比较熟悉,就是可见性。可见性指的是在一个线程中对该变量的修改会马上由工作内存(Work Memory)写回主内存(Main Memory),所以会马上反应在其它线程的读取操作中。顺便一提,工作内存和主内存可以近似理解为实际电脑中的高速缓存和主存,工作内存是线程独享的,主存是线程共享的。volatile的第二层语义是禁止指令重排序优化。大家知道我们写的代码(尤其是多线程代码),由于编译器优化,在实际执行的时候可能与我们编写的顺序不同。编译器只保证程序执行结果与源代码相同,却不保证实际指令的顺序与源代码相同。这在单线程看起来没什么问题,然而一旦引入多线程,这种乱序就可能导致严重问题。volatile关键字就可以从语义上解决这个问题。

注意,前面反复提到“从语义上讲是没有问题的”,但是很不幸,禁止指令重排优化这条语义直到jdk1.5以后才能正确工作。在 Java 5 以前的版本使用了 volatile 的双检锁还是有问题的。其原因是 Java 5 以前的 JMM (Java 内存模型)是存在缺陷的,此前的JDK中即使将变量声明为volatile也无法完全避免重排序所导致的问题。所以,在jdk1.5版本前,双重检查锁形式的单例模式是无法保证线程安全的。这个 volatile 屏蔽重排序的问题在 Java 5 中才得以修复。

静态内部类法

那么,有没有一种既可以延时加载,并且又能保证线程安全的简单写法呢?
我们可以把Singleton实例放到一个静态内部类中,这样就避免了静态实例在Singleton类加载的时候就创建对象,并且由于静态内部类只会被加载一次,所以这种写法也是线程安全的。
另外,在很多情况下JVM已经为我们提供了同步控制,比如:

  • 在static {…}区块中初始化的数据
  • 访问final字段时
    因为在JVM进行类加载的时候他会保证数据是同步的,我们可以这样实现:采用内部类,在这个内部类里面去创建对象实例。这样的话,只要应用中不使用内部类 JVM 就不会去加载这个单例类,也就不会创建单例对象,从而实现「懒汉式」的延迟加载和线程安全。
1
2
3
4
5
6
7
8
9
10
11
public class Singleton {
private static class SingletonHolder {
private static Singleton singleton = new Singleton();
}

private Singleton(){}

public static Singleton getSingleton(){
return SingletonHolder.singleton;
}
}

第一次加载Singleton类时并不会初始化sInstance,只有第一次调用getInstance方法时虚拟机加载SingletonHolder 并初始化sInstance ,这样不仅能确保线程安全也能保证Singleton类的唯一性,所以推荐使用静态内部类单例模式。

这种写法仍然使用JVM本身机制保证了线程安全问题;由于 SingletonHolder 是私有的,除了 getInstance() 之外没有办法访问它,因此它是懒汉式的;同时读取实例的时候不会进行同步,没有性能缺陷;也不依赖 JDK 版本。

但是,上面提到的所有实现方式都有两个共同的缺点:

都需要额外的工作(Serializable、transient、readResolve())来实现序列化,否则每次反序列化一个序列化的对象实例时都会创建一个新的实例。
可能会有人使用反射强行调用我们的私有构造器(如果要避免这种情况,可以修改构造器,让它在创建第二个实例的时候抛异常)。

枚举写法

当然,还有一种更加优雅的方法来实现单例模式,那就是枚举写法.=,
《Java与模式》中,作者这样写道,使用枚举来实现单实例控制会更加简洁,而且无偿地提供了序列化机制,并由JVM从根本上提供保障,绝对防止多次实例化,是更简洁、高效、安全的实现单例的方式。

1
2
3
4
5
6
public enum Singleton {
INSTANCE;
public void doSomeThing() {
// do something...
}
}

使用方法:

1
2
3
4
public static void main(String args[]) {
Singleton singleton = Singleton.INSTANCE;
singleton.doSomeThing();
}

我们可以通过Singleton.INSTANCE来访问实例,这比调用getInstance()方法简单多了。创建枚举默认就是线程安全的,所以不需要担心double checked locking,而且还能防止反序列化导致重新创建新的对象。但是还是很少看到有人这样写,可能是因为不太熟悉吧。

使用枚举除了线程安全和防止反射强行调用构造器之外,还提供了自动序列化机制,防止反序列化的时候创建新的对象。因此,Effective Java推荐尽可能地使用枚举来实现单例。

枚举的好处:

  1. JVM会保证enum不能被反射并且构造器方法只执行一次。
  2. 此方法无偿提供了序列化机制,绝对防止反序列化时多次实例化。
  3. 运行时(compile-time )创建对象(懒加载)

枚举是《Effective Java》作者推荐使用的方法,优点:不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象。在《Java与模式》中,作者这样写道,使用枚举来实现单实例控制会更加简洁,而且无偿地提供了序列化机制,并由JVM从根本上提供保障,绝对防止多次实例化,是更简洁、高效、安全的实现单例的方式。

使用容器

1
2
3
4
5
6
7
8
9
10
11
12
13
public class SingletonManager { 
  private static Map<String, Object> objMap = new HashMap<String,Object>();
  private Singleton() {
  }
  public static void registerService(String key, Objectinstance) {
    if (!objMap.containsKey(key) ) {
      objMap.put(key, instance) ;
    }
  }
  public static ObjectgetService(String key) {
    return objMap.get(key) ;
  }
}

这种使用SingletonManager 将多种单例类统一管理,在使用时根据key获取对象对应类型的对象。这种方式使得我们可以管理多种类型的单例,并且在使用时可以通过统一的接口进行获取操作,降低了用户的使用成本,也对用户隐藏了具体实现,降低了耦合度。

如何破坏单例

  • 反射
  • 序列化和反序列化

总结

一般情况下可以直接使用饿汉式,如果明确要求要懒加载(lazy initialization)会倾向于使用静态内部类,如果涉及到反序列化创建对象时会试着使用枚举的方式来实现单例。

静态内部类法是一个不错的选择。
最后,不管采取何种方案,请时刻牢记单例的三大要点:

  • 线程安全
  • 延迟加载
  • 序列化与反序列化安全

参考资料

[1] 你真的会写单例模式吗——Java实现
[2] 【Java】设计模式:深入理解单例模式
[3] 深入Java单例模式
[4] 如何正确地写出单例模式

涉及到破坏单例模式:
[5] 深入理解单例模式(上)
[6] 单例模式的七种写法